際際滷

際際滷Share a Scribd company logo
CHAPTER IINUMERICAL APPROXIMATIONBY: MARIA FERNANDA VERGARA M.UNIVERSIDAD INDUSTRIAL DE SANTANDER
NUMERICAL APPROXIMATIONA numericalapproximationis a number X thatrepresentsanothernumberwhichitsexactvalueis X. X becomes more exactwhenisclosertotheexactvalue of XIsimportanttotakeintoaccountthisnumericalapproximationbecausenumericalsolutions are notexact, butthemainobjectiveistoget a solutionreallyclosetothe real solution.
SIGNIFICANT FIGURESThe concept of  a significant figure, ordigit, has beendevelopedtoformallydesignatethereliability of a numericalvalue. Thesignificantdigits of a number are thosethat can beusedwithconfidence. Theycorrespondtothenumber of certaindigits plus oneestimateddigit.-Numericalmethodsforengineers, CHAPRA-.Whysignificant figures are important in numericalmethods?
ACCURACY AND PRECISION
ERROR DEFINITIONSNumericalerrorsoriginatewhenyouapproximatetorepresentexactmathematicalquantitiesoroperations. Thiserrors can be: Truncationerrorswhichhappenwhenapproximations are usedtorepresentmathemathicalprocedures; and round-off errorswhichhappenwhenyou use numberswithlimitedsignificant figures toexpressexactnumbers.ET=Real Value - Approximation
RELATIVE ERRORRelative error is a waytoaccountforthe magnitudes of thequantitiesbeingevaluatedTrue percentrelative error
EXAMPLE EXERCISEThemeasure of a bridge is 9999cm, and themeasure of a rivetis 9 cm, ifthe true values are 10.000cm and 10cm, respectively, compute the true error and the true percentrelative error foreach case.
In real worldapplications, wewillnotknowthe true value. So theprocedureistonormalizethe error usingthebestavaliableestimate of the true value:Usinaniterativeapproachto compute answers, theapproximatedrelative error
ROUND-OFF ERRORSThiskind of errorsoriginatebecausecomputers can retain a finitenumber of significant figures, so numbers as e, , cannotbeexpressedexactly.Truncationerrors are thosethatresultfromusinganapproximation in place of anexactmathematicalprocedure.TRUNCATION ERRORS
THE TAYLOR SERIESThe Taylor series provides a meanstofind a functionvalue in a point, usingthefunctionvalue and itsderivatives in anotherpoint. Thetheoremsaysthatanysmoothfunction can beapproximated as polynomial.TaylorsTheorem: Ifthefunction f  and itsfirst n+1 derivatives are continuous in anintervalcontaining a and x, thenthevalue of thefunction at x isgivenbyWhere:
BIBLIOGRAPHYCHAPRA, Steven. Numericalmethodsforengineers; McGraw Hill.ROCHA, Gustavo. M辿todos Num辿ricos.2005
Ad

Recommended

Numerical approximation
Numerical approximation
Lizeth Paola Barrero
NUMERICAL APPROXIMATION
NUMERICAL APPROXIMATION
cyndy
Numerical approximation
Numerical approximation
joemoal williams
Cheg 2052 introduction.pptx
Cheg 2052 introduction.pptx
mohammedseid45
Numerical Methods.pptx
Numerical Methods.pptx
Ayan974999
Numerical approximation
Numerical approximation
Lizeth Paola Barrero
introduction to Numerical Analysis
introduction to Numerical Analysis
Ghulam Mehdi Sahito
Applied numerical methods lec3
Applied numerical methods lec3
Yasser Ahmed
Numerical Analysis And Linear Algebra
Numerical Analysis And Linear Algebra
Ghulam Murtaza
Aproximacion numerica
Aproximacion numerica
marcelafernandagarzon
Es272 ch2
Es272 ch2
Batuhan Y脹ld脹r脹m
NA 2.ppt
NA 2.ppt
FAISALMEHMOOD305238
M辿todos num辿ricos - introducci坦n a los m辿todos num辿ricos
M辿todos num辿ricos - introducci坦n a los m辿todos num辿ricos
David A. Baxin L坦pez
Chapter 2
Chapter 2
universidad industrial de santander
Chapter 2
Chapter 2
universidad industrial de santander
NUMERICA METHODS 1 final touch summary for test 1
NUMERICA METHODS 1 final touch summary for test 1
musadoto
Application's of Numerical Math in CSE
Application's of Numerical Math in CSE
sanjana mun
Numerical approximation
Numerical approximation
Mileacre
Numerical approximation and solution of equations
Numerical approximation and solution of equations
Robinson
Introduction to Numerical Analysis
Introduction to Numerical Analysis
Mohammad Tawfik
01introductiontocomputationalmaterialengineering 101108031216-phpapp01
01introductiontocomputationalmaterialengineering 101108031216-phpapp01
Cem G端ne
Es272 ch0
Es272 ch0
Batuhan Y脹ld脹r脹m
Unit One - Solved problems on error analysis .ppt
Unit One - Solved problems on error analysis .ppt
ashugizaw1506
LEC01.wararAWQWWRwrrwqRQRWQWQqqrwq1.pptx
LEC01.wararAWQWWRwrrwqRQRWQWQqqrwq1.pptx
MacKy29
lecture01.ppt
lecture01.ppt
wafahop
Numerical Method
Numerical Method
Rokonuzzaman Rony
Bisection method
Bisection method
DhaivikGowda
Errors in the Discretized Solution of a Differential Equation
Errors in the Discretized Solution of a Differential Equation
ijtsrd
Estudios de-casos-internacionales-de-ciudades-inteligentes-medellin-colombia
Maria Fernanda
Smart cities a lesson from barcelona
Smart cities a lesson from barcelona
Maria Fernanda

More Related Content

Similar to CHAPTER 2: Numerical Approximation (20)

Numerical Analysis And Linear Algebra
Numerical Analysis And Linear Algebra
Ghulam Murtaza
Aproximacion numerica
Aproximacion numerica
marcelafernandagarzon
Es272 ch2
Es272 ch2
Batuhan Y脹ld脹r脹m
NA 2.ppt
NA 2.ppt
FAISALMEHMOOD305238
M辿todos num辿ricos - introducci坦n a los m辿todos num辿ricos
M辿todos num辿ricos - introducci坦n a los m辿todos num辿ricos
David A. Baxin L坦pez
Chapter 2
Chapter 2
universidad industrial de santander
Chapter 2
Chapter 2
universidad industrial de santander
NUMERICA METHODS 1 final touch summary for test 1
NUMERICA METHODS 1 final touch summary for test 1
musadoto
Application's of Numerical Math in CSE
Application's of Numerical Math in CSE
sanjana mun
Numerical approximation
Numerical approximation
Mileacre
Numerical approximation and solution of equations
Numerical approximation and solution of equations
Robinson
Introduction to Numerical Analysis
Introduction to Numerical Analysis
Mohammad Tawfik
01introductiontocomputationalmaterialengineering 101108031216-phpapp01
01introductiontocomputationalmaterialengineering 101108031216-phpapp01
Cem G端ne
Es272 ch0
Es272 ch0
Batuhan Y脹ld脹r脹m
Unit One - Solved problems on error analysis .ppt
Unit One - Solved problems on error analysis .ppt
ashugizaw1506
LEC01.wararAWQWWRwrrwqRQRWQWQqqrwq1.pptx
LEC01.wararAWQWWRwrrwqRQRWQWQqqrwq1.pptx
MacKy29
lecture01.ppt
lecture01.ppt
wafahop
Numerical Method
Numerical Method
Rokonuzzaman Rony
Bisection method
Bisection method
DhaivikGowda
Errors in the Discretized Solution of a Differential Equation
Errors in the Discretized Solution of a Differential Equation
ijtsrd
Numerical Analysis And Linear Algebra
Numerical Analysis And Linear Algebra
Ghulam Murtaza
M辿todos num辿ricos - introducci坦n a los m辿todos num辿ricos
M辿todos num辿ricos - introducci坦n a los m辿todos num辿ricos
David A. Baxin L坦pez
NUMERICA METHODS 1 final touch summary for test 1
NUMERICA METHODS 1 final touch summary for test 1
musadoto
Application's of Numerical Math in CSE
Application's of Numerical Math in CSE
sanjana mun
Numerical approximation
Numerical approximation
Mileacre
Numerical approximation and solution of equations
Numerical approximation and solution of equations
Robinson
Introduction to Numerical Analysis
Introduction to Numerical Analysis
Mohammad Tawfik
01introductiontocomputationalmaterialengineering 101108031216-phpapp01
01introductiontocomputationalmaterialengineering 101108031216-phpapp01
Cem G端ne
Unit One - Solved problems on error analysis .ppt
Unit One - Solved problems on error analysis .ppt
ashugizaw1506
LEC01.wararAWQWWRwrrwqRQRWQWQqqrwq1.pptx
LEC01.wararAWQWWRwrrwqRQRWQWQqqrwq1.pptx
MacKy29
lecture01.ppt
lecture01.ppt
wafahop
Bisection method
Bisection method
DhaivikGowda
Errors in the Discretized Solution of a Differential Equation
Errors in the Discretized Solution of a Differential Equation
ijtsrd

More from Maria Fernanda (12)

Estudios de-casos-internacionales-de-ciudades-inteligentes-medellin-colombia
Maria Fernanda
Smart cities a lesson from barcelona
Smart cities a lesson from barcelona
Maria Fernanda
Internet of things en las smart cities
Maria Fernanda
Chapter v
Chapter v
Maria Fernanda
Chapter 4: Linear Algebraic Equations
Chapter 4: Linear Algebraic Equations
Maria Fernanda
Roots of polynomials
Roots of polynomials
Maria Fernanda
Roots of polynomials
Roots of polynomials
Maria Fernanda
Chapter 3: Roots of Equations
Chapter 3: Roots of Equations
Maria Fernanda
Chapter 2: Numerical Approximation
Chapter 2: Numerical Approximation
Maria Fernanda
Chapter 1: Darcy's law
Chapter 1: Darcy's law
Maria Fernanda
CHAPTER 1: Modeling
CHAPTER 1: Modeling
Maria Fernanda
Chapter I
Chapter I
Maria Fernanda
Estudios de-casos-internacionales-de-ciudades-inteligentes-medellin-colombia
Maria Fernanda
Smart cities a lesson from barcelona
Smart cities a lesson from barcelona
Maria Fernanda
Internet of things en las smart cities
Maria Fernanda
Chapter 4: Linear Algebraic Equations
Chapter 4: Linear Algebraic Equations
Maria Fernanda
Chapter 3: Roots of Equations
Chapter 3: Roots of Equations
Maria Fernanda
Chapter 2: Numerical Approximation
Chapter 2: Numerical Approximation
Maria Fernanda
Chapter 1: Darcy's law
Chapter 1: Darcy's law
Maria Fernanda
Ad

CHAPTER 2: Numerical Approximation

  • 1. CHAPTER IINUMERICAL APPROXIMATIONBY: MARIA FERNANDA VERGARA M.UNIVERSIDAD INDUSTRIAL DE SANTANDER
  • 2. NUMERICAL APPROXIMATIONA numericalapproximationis a number X thatrepresentsanothernumberwhichitsexactvalueis X. X becomes more exactwhenisclosertotheexactvalue of XIsimportanttotakeintoaccountthisnumericalapproximationbecausenumericalsolutions are notexact, butthemainobjectiveistoget a solutionreallyclosetothe real solution.
  • 3. SIGNIFICANT FIGURESThe concept of a significant figure, ordigit, has beendevelopedtoformallydesignatethereliability of a numericalvalue. Thesignificantdigits of a number are thosethat can beusedwithconfidence. Theycorrespondtothenumber of certaindigits plus oneestimateddigit.-Numericalmethodsforengineers, CHAPRA-.Whysignificant figures are important in numericalmethods?
  • 5. ERROR DEFINITIONSNumericalerrorsoriginatewhenyouapproximatetorepresentexactmathematicalquantitiesoroperations. Thiserrors can be: Truncationerrorswhichhappenwhenapproximations are usedtorepresentmathemathicalprocedures; and round-off errorswhichhappenwhenyou use numberswithlimitedsignificant figures toexpressexactnumbers.ET=Real Value - Approximation
  • 6. RELATIVE ERRORRelative error is a waytoaccountforthe magnitudes of thequantitiesbeingevaluatedTrue percentrelative error
  • 7. EXAMPLE EXERCISEThemeasure of a bridge is 9999cm, and themeasure of a rivetis 9 cm, ifthe true values are 10.000cm and 10cm, respectively, compute the true error and the true percentrelative error foreach case.
  • 8. In real worldapplications, wewillnotknowthe true value. So theprocedureistonormalizethe error usingthebestavaliableestimate of the true value:Usinaniterativeapproachto compute answers, theapproximatedrelative error
  • 9. ROUND-OFF ERRORSThiskind of errorsoriginatebecausecomputers can retain a finitenumber of significant figures, so numbers as e, , cannotbeexpressedexactly.Truncationerrors are thosethatresultfromusinganapproximation in place of anexactmathematicalprocedure.TRUNCATION ERRORS
  • 10. THE TAYLOR SERIESThe Taylor series provides a meanstofind a functionvalue in a point, usingthefunctionvalue and itsderivatives in anotherpoint. Thetheoremsaysthatanysmoothfunction can beapproximated as polynomial.TaylorsTheorem: Ifthefunction f and itsfirst n+1 derivatives are continuous in anintervalcontaining a and x, thenthevalue of thefunction at x isgivenbyWhere:
  • 11. BIBLIOGRAPHYCHAPRA, Steven. Numericalmethodsforengineers; McGraw Hill.ROCHA, Gustavo. M辿todos Num辿ricos.2005